[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 21, Issue 1 (Spring 2024) ::
Sci J Iran Blood Transfus Organ 2024, 21(1): 66-81 Back to browse issues page
The effect of different oxygen concentrations on stemness of hematopoietic stem cells
F. Mohammadali , M. Jamali
Keywords: Key words: Hypoxia, Oxygen, Hematopoietic Stem Cells ​​​​​​​
Full-Text [PDF 791 kb]   (161 Downloads)     |   Abstract (HTML)  (537 Views)
Type of Study: Review Article | Subject: Stem cells
Published: 2024/03/29
Full-Text:   (36 Views)
References:
  1. Mohammadali F, Atashi A, Soleimani M, Abroun S, Pourfathollah AA, Kaviani S, et al. Umbilical cord blood: stem cells and ex vivo expansion methods. Sci J Iran Blood Transfus Organ 2015; 12(2): 183-205. [Article in Farsi]
  2. Eliasson P, Jonsson JI. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 2010; 222: 17-22.
  3. Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, et al  Insight into Hypoxia Stemness Control. Cells 2021; 10(8): 2161
  4. Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 2005; 1755: 107-20.
  5. Simon, M.C, Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 2008; 9: 285-96.
  6. Ivanovic  Z, Dello Sbarba P, Trimoreau  F, Faucher  JL, Praloran V. Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 2000; 40: 1482-8.
  7. Ivanovic  Z, Bartolozzi B , Bernabei  PA , Cipolleschi MG, Rovida  E, Milenkovic P, et al. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br J Haematol 2000; 108: 424-9.
  8. Chow DC, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian Models Biophys J 2001; 81(2): 685-96.
  9. Cipolleschi  MG. Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol 1997; 25: 1187-94.
  10. Bapat A, Schippel N, Shi X, Jasbi P, Gu H, Kala M, et al. Hypoxia promotes erythroid differentiation through the development of progenitors and proerythroblasts. Exp Hematol 2021; 97: 32-46.
  11. Koller MR, Bender JG, Miller WM, , Papoutsakis ET. Reduced oxygen tension increases hematopoiesis in longterm culture  of  human  stem  and  progenitor cells from cord blood and bone marrow. Exp Hematol  1992; 20: 264-70.
  12. Cipolleschi MG, Dello Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 1993; 82: 2031-7.
  13. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 2003; 112: 126-35.
  14. Dausinas Ni Paige, Basile Ch, Junge Ch, Hartman M, O’Leary Heather. Hypoxia and Hematopoiesis.  Curr Stem Cell Rep 2022; 8: 24-34.
  15. Kubota Y, Takubo K, Suda T. Bone marrow long label retaining cells reside in the sinusoidal hypoxic niche. Biochem Biophys Res Commun 2008; 366: 335-9.
  16. Lo Celso C, Wu JW, Lin CP. In vivo   imaging of hematopoietic stem cells and their microenvironment. J Biophotonics 2009; 2: 619-31.
  17. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 2007; 104: 5431-6.
  18. Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, Levesque JP. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside indistinct nonperfused niches. Blood 2010; 116: 375-85.
  19. Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development 2014; 141: 4206-18.
  20. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell 2012; 10: 120-36.
  21. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 2011; 474: 216-19.
  22. Roy S , Tripathy M, Mathur N, Jain A, Mukhopadhyay A. Hypoxia improves expansion potential of human cord blood–derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 2012; 88(5): 396-405.
  23. Quinlan  DP, Rameshwar  P, Qian J, Maloof  PB, Mohr  AM , Hauser  CJ , et al. Effect of hypoxia on the hematopoietic and immune modulator preprotachykinin-I. Arch Surg 1998; 133: 1328-34.
  24. Bates MK. Culturing Cells Under Hypoxic Conditions for Biologically Relevant Results. Am Lab 2012. Available from: https://www.americanlaboratory.com/913-Technical-Articles/123131-Culturing-Cells-Under-Hypoxic-Conditions-for-Biologically-Relevant-Results/#:~:text=Cells%20cultured%20in%20low%20oxygen,way%20to%20achieve%20hypoxic%20conditions.
  25. Lin M, Liu X, Zheng H, Huang X, Wu Y, Huang A, et al. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther 2020; 11(1): 22.
  26. Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck EE, Rappolee DA. Departure from optimal O2 level for mouse trophoblast stem cell proliferation and potency leads to most rapid AMPK activation. J Reprod Dev 2017; 63: 87-94.
  27. Esteban MA, Maxwell PH. Manipulation of oxygen tensions for in vitro cell culture using a hypoxic workstation. Expert Rev Proteom 2005; 2: 307-14.
  28. Lam SF, Shirure VS, Chu YE, Soetikno AG, George SC. Microfluidic device to attain high spatial and temporal control of oxygen. PLoS ONE 2018; 13: e0209574.
  29. Place TL, Domann FE, Case AJ. Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic and translational research. Free Radic Biol Med 2017; 113: 311-22.
  30. Rivera KR , Yokus MA , Erb PD , Pozdin VA , Daniele M. Measuring and regulating oxygen levels in microphysiological systems: Design, material, and sensor considerations. Analyst 2019; 144: 3190-3215.
  31. Davis CK, Jain SA, Bae ON, Majid A, Rajanikant GK. Hypoxia Mimetic Agents for Ischemic Stroke. Front Cell Dev Biol 2019; 6: 175.
  32. Triantafyllou A, Liakos P, Tsakalof A, Georgatsou E, Simos G, Bonanou S. Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism. Free Radic Res 2006; 40: 847-56.
  33. Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol 2019; 39: 556-70.
  34. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem  2000; 275: 25130-8.
  35. Wu D, Yotnda P. Induction and testing of hypoxia in cell culture. J Vis Exp 2011;(54): 2899 .
  36. Buravkova LB, Andreeva ER, Gogvadze V, Zhivotovsky B. Mesenchymal stem cells and hypoxia: Where are we? Mitochondrion 2014; 19: 105-12.
  37. Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27: 1303-21.
  38. Koh MY, Powis G. Passing the baton: The HIF switch. Trends Biochem Sci 2012; 37: 364-72.
  39. Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 2010; 38(4): 301-10.
  40. Lengner A. Deriviation of pre-X inactivation human embryonic stem cells under physiological Cipolleschi MG, Dello Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 1993; 82(7): 2031-7.
  41. Rich IN, Kubanek B. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. Br J Haematol 1982; 52(4): 579-88.
  42. Ivanovic Z, Hermitte F, Brunet de la Grange P. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells  2004; 22(5): 716-24.
  43. Eliasson P, Karlsson R, Jönsson JI. Hypoxia expands primitive hematopoietic progenitor cells from mouse bone marrow during in vitro culture and preserves the colony-forming ability. J Stem Cells 2006; 1(4): 247-57.
  44. Shima H, Takubo K, Iwasaki H. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice. Biochem Biophys Res Commun 2009; 378(3): 467-72..
  45. Jing D, Wobus M, Poitz DM, Bornhäuser M, Ehninger G, Ordemann R. Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica  2012; 97(3): 331-9
  46. Cipolleschi MG, Rovida E, Ivanovic Z, Praloran V, Olivotto M, Dello Sbarba P. The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability. Leukemia 2000; 14: 735-9.
  47. Matilda Rehn. The Hypoxic Hematopoietic Stem Cell Niche: Consequences of Hypoxia-induced Transcription on Stem Cell Fate [dissertion]. Lund University; 2011. p. 71 .
  48. Mantel CR, O'Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, et al. Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell 2015; 161(7): 1553-65.
  49. Wang X, Cooper S, Broxmeyer HE, Kapur R. Nuclear translocation of TFE3 under hypoxia enhances the engraftment of human hematopoietic stem cells. Leukemia  2022; 36(8): 2144-8.
  50. Roy S, Tripathy M, Mathur N, Jain A, Mukhopadhyay A. Hypoxia improves expansion potential of human cord blood–derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol  2012; 88(5): 396-405.
  51. Kobayashi H, Morikawa T, Okinaga A, Hamano F, Hashidate-Yoshida T, Watanuki S, et al. Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo. Cell Rep  2019; 28(1): 145-58.
  52. Tiwari A, Wong CS, Nekkanti LP, Deane JA, McDonald C, Jenkin G, et al. Impact of Oxygen Levels on Human Hematopoietic Stem and Progenitor Cell Expansion. Stem Cells Dev 2016; 25(20): 1604-13.
  53. Hermitte F, Brunet de la Grange P, Belloc F, Praloran V, Ivanovic Z. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 2006; 24(1): 65-73.
  54. Mohammadali F, Abroun S, Atashi A. Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells. Iran J Basic Med Sci 2018; 21(7): 709-16.
  55. Tursky ML, Collier FM, Ward AC. Systematic investigation of oxygen and growth factors in clinically valid ex vivo expansion of cord blood CD34+ hematopoietic progenitor cells. Cytotherapy 2012; 14(6): 679-85.
  56. Song K1, Zhao G, Liu T, Zhang L, Ma X, Liu J, et al. Effective expansion of umbilical cord blood hematopoietic stem/progenitor cells by regulation of microencapsulated osteoblasts under hypoxic condition. Biotechnol Lett 2009; 31(7): 923-8
  57. Andreeva ER, Andrianova IV, Sotnezova EV, Buravkov SV, Bobyleva PI, Romanov YA, et al. Human Adipose-Tissue Derived Stromal Cells in Combination with Hypoxia Effectively Support Ex Vivo Expansion of Cord Blood Haematopoietic Progenitors. PLoS ONE  2015; 10(4): e0124939.
  58. Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Bone Marrow Transpl 2009; 44(10): 673-81.
  59. Kiani AA, Abdi J, Halabian R, Roudkenar MH, Amirizadeh N, Soleiman Soltanpour M, et al. Over expression of HIF-1α in human mesenchymal stem cells increases their supportive functions for hematopoietic stem cells in an experimental co-culture model. Hematology 2014; 19(2): 85-98.
  60. Moirangthem RD, Singh S, Adsul A, Jalnapurkar S, Limaye L, Kale VP. Hypoxic niche-mediated regeneration of hematopoiesis in the engraftment window is dominantly affected by oxygen tension in the milieu. Stem Cells Dev 2015; 24(20): 2423-36.
  61. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood) 2001; 226(6): 507-20.
  62. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119(Pt 11): 2204-13.
  63. Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone، cartilage، tendon and skeletal muscle repair. Bone 2006; 39(4): 678-83.
  64. Rojewski MT, Weber BM, Schrezenmeier H. Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus Med  Hemother 2008; 35(3): 168-84.
  65. Charbord P, Casteilla L. Human mesenchymal stem cell biology. Med Sci 2011; 27(3): 261-7. [Article in French]
  66. Barreto-Duran E, Mejia-Cruz CC, Jaramillo-Garcia LF, Leal-Garcia E, Barreto-Prieto A, Rodriguez-Pardo VM. 3D Multicellular Spheroid for the Study of Human Hematopoietic Stem Cells: Synergistic Effect Between Oxygen Levels, Mesenchymal Stromal Cells and Endothelial Cells. J Blood Med 2021; 12: 517-28.
  67. Bangheng Liu ab, Chao Tao b, Zhonglian Wu c, Hang Yao c and Dong-An Wang. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B  2022; 10: 1734-53.
  68. Muz B, Khan MN, Kiriakidis S, Paleolog EM. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res Ther 2009; 11: 201.
  69. Khan WS, Adesida AB, Hardingham TE. Hypoxic conditions increase hypoxia-inducible transcription factor 2_ and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Res Ther 2007; 9:  R55.
  70. Kaluz S, Kaluzová M, Stanbridge EJ. Regulation of gene expression by hypoxia: Integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 2008; 395: 6-13.
  71. Berchner-Pfannschmidt U, Frede S, Wotzlaw C, Fandrey J. Imaging of the hypoxia-inducible factor pathway: Insights into oxygen sensing. Eur Respir J  2008; 32: 210-7
  72. Huang LE, Bunn HF. Hypoxia-inducible Factor and Its Biomedical Relevance. J Biol Chem  2003; 278: 19575-8.
  73. Yang M, Su H, Soga T, Kranc KR, Pollard PJ. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia (Auckl)  2014; 2: 127-42.
  74. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 2001; 15(7): 1312-4. 
  75. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell  2010; 7(3): 391-402.
  76. Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C, Gezer D, et al. Hif-2alpha is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 2013; 122(10): 1741-5. 
  77. Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez M, et al. HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 2013; 13(5): 549-63.
  78. Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA. The HIF family member EPAS1/ HIF-2alpha is required for normal hematopoiesis in mice. Blood 2003; 102(5): 1634-40.
  79. Singh RP, Franke K, Kalucka J, Mamlouk S, Muschter A, Gembarska A, et al. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady state and stress. Blood 2013; 121(26): 5158-66.
  80. Kranc KR, Schepers H, Rodrigues NP, Bamforth S, Villadsen E, Ferry H, et al. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell 2009; 5(6): 659-65.
  81. Huang X, Trinh T, Aljoufi A, Broxmeyer HE. Hypoxia Signaling Pathway in Stem Cell Regulation: Good and Evil. Curr Stem Cell Rep 2018; 4(2): 149-57.
  82. Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood 2003; 102(5): 1634-40.
  83. Scadden, D.T. The stem-cell niche as an entity of action. Nature 2006; 441: 1075-9.
  84. Discher DE, Mooney DJ, Zandstra PW. Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science 2009; 324: 1673-7.
  85. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 2014; 32: 795-803.
  86. Mas-Bargues C, Sanz-Ros J, Román-Domínguez A, Inglés M, Gimeno-Mallench L, et al. Relevance of Oxygen Concentration in Stem Cell Culture for Regenerativ Medicine. Int J Mol Sci 2019; 20: 1195.
  87. Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10(6): e2002058.
  88. Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, et al. Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency: ESC Metabolism by Core Pluripotency Factors. Stem Cells 2015; 33: 2699-711.
  89. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP,  et al. Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell 2005; 122: 947-56.
  90. Murugesan, M. Premkumar, K. Hypoxia stimulates microenvironment in human embryonic stem cell through inflammatory signalling: An integrative analysis. Biochem Biophys Res Commun 2018; 498: 437-44.
  91. Zhang,W. Sui, Y,Ni, J. Yang, T. Insights into the Nanog gene: A propeller for stemness in primitive stem cells. Int J Biol Sci 2016; 12: 1372-81.
  92. Son MY, Choi H, Han YM, Cho YS. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Stem Cells 2013; 31: 2374-87.
  93. Amiri F, Kiani AA, Bahadori M, Roudkenar MH. Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: a cost-effective method to maintain self-renewal and homing marker expression. Mol Biol Rep 2022; 49(2): 931-41.
  94. Zhao D, Liu L, Chen Q, Wang F, Li Q, Zeng Q, et al . Hypoxia with Wharton's jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34+ cells. Stem Cell Res Ther 2018; 9(1): 158.
  95.  Mohammadali F, Abroun S, Atashi A. Combined mild hypoxia and bone marrow mesenchymal stem cells improve expansion and HOXB4 gene expression of human cord blood CD34+ stem cells. Arch Biol Sci  2018; 70(3): 433-41.
  96. Zhang Y, Gao Y. Novel chemical attempts at ex vivo hematopoietic stem cell expansion. Int J Hematol 2016; 103: 519-29.
  97. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91: 12223–7.
  98. Pineault N, Helgason CD, Lawrence HJ, Humphries RK. Differential expression of  Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49-57.
  99. Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol  2001; 29: 1125-34.
  100. Thorsteinsdottir U, Sauvageau G, Humphries RK. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 1999; 94: 2605-12.
  101. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell  2002; 109: 39-45.
  102. Kumar S, Geiger H. HSC Niche Biology and HSC Expansion Ex Vivo. Trends Mol Med 2017; 23(9): 799-819.
  103. Iriuchishima H, Takubo K, Matsuoka S, Onoyama I, Nakayama KI, Nojima Y, Suda T. Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7α overexpression. Blood  2011; 117(8): 2373-7.
  104. Dausinas Ni P, Hartman M, Slack J, Basile C, Liu S, Wan J, et al . Novel differential calcium regulation of hematopoietic stem and progenitor cells under physiological low oxygen conditions. J Cell Physiol  2023; 238(7): 1492-1506.
  105. Möhl R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998; 91: 4523- 30.
  106. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell  2006; 124: 175-89.
  107. Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005; 97: 1142-51.
  108. Denning-Kendall P, Singha S, Bradley B, Hows J. Cytokine Expansion Culture of Cord Blood CD34+Cells Induces Marked and Sustained Changes in Adhesion Receptor and CXCR4 Expressions. Stem Cells 2003; 21(1): 61-70.
  109. Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation.
    Blood 2001; 97(3): 799-804.
  110. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immunedeficient mice. Proc Natl Acad Sci USA 1997; 94: 5320-5.
  111. Bryder D, Jacobsen SE. Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro. Blood 2000; 96: 1748-55.
  112. Piacibello W, Gammaitoni L, Bruno S, Gunetti M, Fagioli F, Cavalloni G, et al. Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells. J Hematother Stem Cell Res 2000; 9: 945-56.
  113. Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009; 104: 1209-16.
  114. Speth JM, Hoggatt J, Singh P, Pelus LM. Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment. Blood 2014; 123(2): 203-7.
  115. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003; 425(6955): 307-11.
  116. Sushmita Roy, Manjul Tripathy, Nitin Mathur, Asish Jain, Asok Mukhopadhyay. Hypoxia improves expansion potential of human cord blood–derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 2012; 88(5): 396-405.











Sci J Iran Blood Transfus Organ 2024;21 (1): 66-81
Review Article
 
The effect of different oxygen concentrations

on stemness of hematopoietic stem cells

Mohammadali F.1, Jamali M.1


1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran


Abstract
Background and Objectives
Recently, studies on the factors involved in stemness of stem cells have received a lot of attention due to its importance of stem cell-based treatments. One of the important stimuli in the fate of stem cells is the amount of oxygen in the environment. The results of various studies showed that a low concentration of oxygen in the niche of stem cells, preserves the reserves of the stem cells. Therefore, this study aims to investigate the effect of hypoxia on the hematopoietic stem cells (HSC) and the involved mechanisms.

Materials and Methods
In this review article, more than 100 papers in the pubmed database were reviewed. In this study, hypoxia induction methods, the effect of hypoxia on HSC and the effect of hypoxia on HSCs in Co-culture with other cells, hypoxia relationship with HIF1a factor and hypoxia relationship with stem cell stemness were discussed.

Results
The results of this review showed that low oxygen concentration can affect the stemness of stem cells. The difference in the results observed in different studies was due to different hypoxia induction methods, oxygen percentage, type of stem cells and time exposed to hypoxia, which necessitated optimization of the protocols for hypoxia induction.

Conclusions 
Compared to the oxygen concentration of the environment, very low concentrations of oxygen (anoxia: 1%) take the stem cells mainly in the dormant phase and maintain a high stemness state, while at higher concentrations (5%) along with maintaining the proliferative potential of cells, stemness is also maintained. Of course, designing optimal culture conditions with specific oxygen concentration and understanding the mechanisms involved can help in the development of new target molecules and treatments based on stem cell in various diseases.

Key words: Hypoxia, Oxygen, Hematopoietic Stem Cells







Received: 2 Dec 2023
Accepted:1 Jan 2024



Correspondence: Mohammadali F., PhD of Hematology & Blood Banking. Assistant Professor of Blood Transfusion Research Center, High Institute for Research and education in Transfusion Medicine.
P.O.Box: 14665-1157, Tehran, Iran. Tel: (+9821) 88629553; Fax: (+9821) 88628708
 E-mail: f.mohammadali86@yahoo.com

Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadali F, Jamali M. The effect of different oxygen concentrations on stemness of hematopoietic stem cells. Sci J Iran Blood Transfus Organ 2024; 21 (1) :66-81
URL: http://bloodjournal.ir/article-1-1516-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (Spring 2024) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4645